BUSBAR TRUNKING SYSTEM

What is BUSBAR? (extracted from http://www.wikipedia.com/)

A busbar in electrical power distribution refers to thick strips of copper or aluminium that conduct electricity within a switchboard, distribution board, substation, or other electrical apparatus. The size of the busbar is important in determining the maximum amount of current that can be safely carried. Busbars can have a cross-sectional area of as little as 10 mm² but electrical substations may use metal tubes of 50 mm in diameter (1,000 mm²) or more as busbars. Busbars are typically either flat strips or hollow tubes as these shapes allow heat to dissipate more efficiently due to their high surface area to cross-sectional area ratio. The skin effect makes 50-60 Hz AC busbars more than about 8 mm (1/3 in) thick inefficient, so hollow or flat shapes are prevalent in higher current applications. A hollow section has higher stiffness than a solid rod, which allows a greater span between busbar supports in outdoor switchyards. A busbar may either be supported on insulators, or else insulation may completely surround it. Busbars are protected from accidental contact either by a metal enclosure or by elevation out of normal reach. Neutral busbars may also be insulated. Earth busbars are typically bolted directly onto any metal chassis of their enclosure. Busbars may be enclosed in a metal housing, in the form of bus duct or busway, segregated-phase bus, or isolated-phase bus. Busbars may be connected to each other and to electrical apparatus by bolted or clamp connections. Often joints between high-current bus sections have matching surfaces that are silver-plated to reduce the contact resistance. At extra-high voltages (more than 300 kV) in outdoor buses, corona around the connections becomes a source of radio-frequency interference and power loss, so connection fittings designed for these voltages are used.



"Strictly for academic purpose only"

No comments: